ANATOMICAL NEUROIMAGING

Josh Cochran

Overview

- Anatomical and physics refresher
- Anatomical scans
 - \circ $\,$ How to differentiate them and what you can see
- Anatomical image processing
 - What needs to be done and what you get from it

Main Components of the Brain

MRI Physics Refresher

T1w Images

	TR (msec)	TE (msec)
T1-Weighted (short TR and TE)	500	14
T2-Weighted (long TR and TE)	4000	90
Flair (very long TR and TE	9000	114

T2w Images

	TR (msec)	TE (msec)
T1-Weighted (short TR and TE)	500	14
T2-Weighted (long TR and TE)	4000	90
Flair (very long TR and TE	9000	114

Flair Images

	TR (msec)	TE (msec)
T1-Weighted (short TR and TE)	500	14
T2-Weighted (long TR and TE)	4000	90
Flair (very long TR and TE	9000	114

	T1-Weighted	T2-Weighted	Flair
CSF	Dark	Bright	Dark
White Matter	Light	Dark Gray	Dark Gray
Gray Matter	Gray	Light Gray	Light Gray

R

x=-1.2mm

y=-227.8mm

R

T1w with Contrast

- Gadolinium(III) -GAD
- Iron oxide: superparamagnetic
- Iron platinum: superparamagnetic
- Manganese

Image resolution

- Resolution can affect how we calculate volumes
- Images that are anisotropic compared to isotropic can also affect volume calculations
 - <u>Geographic Example</u>

Coastline Paradox

• Coastline do not have a well-defined length due to the fractal curve-like properties of the coast

Partial Voluming

- Each voxels signal is the sum of **all** the signal within the volume
- The lower the resolution the less confident we can be in boundaries

Images directly off the scanner are imperfect

- Noise
- Misalignment
- Anisotropic images

Reorienting Images

- We want to make sure that all images are oriented the same way for processing
- We use RPI orientation

Right	Left
Anterior	Posterior
Inferior	Superior

Denoising Images

- Noise can affect image processing
- Can employ Rician or Gaussian noise model

Before & After

Rigid alignment to template

- We want scans to generally aligned to the same place as template brain
- We do this rather than ACPC alignment or feature detection
- Rigid alignment allows scans to be generally aligned and reduces computing work

Averaging multiple images

 $\circ\,$ Scans are just number in space

 Multiple good scans can be averaged together to best represent the participant

Foreground/Background Masking

- Use AFNI 3dAutomask to focus on the center of the FOV
- This allow for faster and more accurate processing as everything is focused on the brain

Intensity non-homogeneity correction

• T1/T2 Method

$$\frac{T1w}{T2w} \approx \frac{x*b}{(1/x)*b} = x^2$$

- N4 Method
 - N4 curves are fit to low frequency fluctuations in intensity

Brain Extraction

- Masks are just numbers in space
- $\circ~$ They can be used to represent any part of the brain

All Masking Programs Have Problems

- 3dskullstrip, BET2, ANTs Brain Extraction can all misidentify brain boundaries
- Multi-Atlas Label Fusion (MALF), Venn, Union, Intersection

Rescale Intensity

- Want to create separation of the GM and WM peaks in an intensity histogram
- We must be careful here if the magnitude of intensity is an important measure

Native space

- After all this the images are now in their native
- We can do Atropos tissue classification to mask GM, WM, and CSF

y=106

y=114

y=122

y=138

y=211

v=146

y=203

y=130

y=227

y=154

Normalization to template space

- Common spaces are MNI, HCP, Talairach
- MNI is good for fMRI scan
- HCP is better for Jacobians

y=219

Freesurfer

- Created by Bruce Fischl, Anders Dale, Martin Sereno, and Doug Greve
- Best used for measuring cortical structure
- Has capabilities to do functional and diffusion images as well

Freesurfer Outputs

- pial, white and inflated surface
- sulcal and curvature maps
- thickness maps
- cortical parcellation

BRAINSAutoworkup

• Developed by Hans Johnson

 We use it to quantify volumetric data for regions throughout the brain

BRAINSAutoworkup Outputs

- $\circ~$ Tissue labels
- Average cleaned images
- Probability masks
- Tissue segmentations

Reference

- https://case.edu/med/neurology/NR/MRI%20Basics.htm
- <u>https://my-ms.org/mri_basics.htm</u>
- <u>https://en.wikipedia.org/wiki/MRI_sequence</u>
- https://stanford.edu/class/ee367/Winter2016/Chaudhari_Report.pdf
- https://www.hindawi.com/journals/cmmm/2020/1405647/
- <u>https://en.wikipedia.org/wiki/MRI contrast agent</u>
- <u>https://surfer.nmr.mgh.harvard.edu/</u>
- <u>https://github.com/BRAINSia/BRAINSTools</u>
- <u>https://cdn.intechopen.com/pdfs/58070.pdf</u>
- <u>http://www.grahamwideman.com/gw/brain/orientation/orientterms.htm</u>
- <u>https://brainlife.io/docs/tutorial/t1w-preprocessing/</u>
- https://sabre.brainlab.ca/docs/processing/stage3.html
- <u>https://en.wikipedia.org/wiki/Coastline_paradox</u>
- <u>https://medicine.uiowa.edu/psychiatry/content/mri-machine-</u>
 <u>%E2%80%98out-world%E2%80%99-iowa-city-company-wraps-scanner-</u>

vinyl-make-it-more-kid-friendly

- https://en.wikipedia.org/wiki/Rice_distribution
- <u>https://hullabaloo.co.uk/blog/high-res-low-res-make-sure-digital-images-suitable-print/</u>
- <u>https://upload.wikimedia.org/wikipedia/commons/thumb/1/1c/Water_mo</u> <u>lecule_3D.svg/2386px-Water_molecule_3D.svg.png</u>
- <u>https://upload.wikimedia.org/wikipedia/commons/thumb/b/b5/Neuron.sv</u> g/1200px-Neuron.svg.png

