

Diffusion Imaging

Merry Mani, PhD Microstructure Imaging Lab Department of Radiology, Univ of Iowa

Outline

IOWA

>What is diffusion and why do we care ?

>How to model diffusion signal?

>What are the pitfalls of modeling ?

Fiber Tracking using diffusion MRI

≻How to pre-process diffusion data?

How to extract biologically meaningful diffusion measures ?

"Diffusion"

In Unrestricted Medium:

Isotropic Diffusion

- In Biological Tissues:
 - Presence of tissue boundaries
 - Random walk get modified

Restricted Medium : Isotropic Diffusion not possible Random diffusing motion between the cellular spaces

Anisotropic Diffusion

Patterns of water diffusion in tissue reflect the microstructure of the medium

- In Biological Tissues:
 - Membrane permeability
 - Macromolecules
 - Packing density
 - Compartment size

Sensitizing the MRI signal to water diffusion is a way to indirectly get information about tissue microstructure and its changes

IOWA

- Degree of diffusion restriction affected by
 - Changes in the cellular density of tissue
 - > amount of intracellular versus extracellular water
- Conditions such as :
 - ischemic infarcts, tumor produce highly restricted diffusion
 cysts and edema yield low degrees of diffusion restriction

Diagnosis of pathological and histological information

Diffusion Weighted MRI in clinic

IOWA

Many pathologies cause restricted extracellular water diffusion

- Vascular Etiologies
 - Ischemia-infarction
 - Hypoxic-ischemic Injury
 - Acute Hypertensive Encephalopathy
 - Venous Infarction

Infectious Etiologies

- > Abscess
- Empyema
- Ventriculitis
- Viral Encephalitis (Herpes, HIV, etc.)
- Progressive Multifocal Leukoencephalopathy
- Creutzfeldt-Jakob Disease
- Toxoplasmosis

- Neoplastic Etiologies
 - Meningioma
 - Primary CNS Lymphoma
 - Glioblastoma
 - Demyelinating Etiologies
 - Tumefactive Multiple Sclerosis
 - Neuromyelitis Optica
 - Acute Disseminated Encephalomyelitis
- Metabolic/Toxic Etiologies
 - Osmotic Demyelination Syndrome
 - Hypoglycemic Encephalopathy
 - Wernicke Encephalopathy
 - Carbon Monoxide Poisoning
 - Ethylene Glycol and Methanol Toxicity

- Trauma
 - Diffuse Axonal Injury
- MiscellaneousEtiologies
 - Epidermoid Cyst
 - Choroid Plexus Cyst
 - Status
 Epilepticus
 - Wallerian Degeneration

Daniel J, J Am Osteopath Coll Radiol. 2020;9(3):20-31.

Biological Significance

Anisotropy of water diffusion Axonal pathways

in vivo connectivity (e.g., orientation, density)

in vivo white matter integrity

(e.g.:, maturation/myelination, neurodegeneration)

Outline

>What is diffusion and why do we care ?

>How to model diffusion signal?

>What are the pitfalls of modeling ?

Fiber Tracking using diffusion MRI

≻How to pre-process diffusion data?

How to extract biologically meaningful diffusion measures ?

Full diffusion behavior in 3D space

>described using ellipsoids (Tensor)

$$\underline{D} = \begin{pmatrix} D_{xx} & D_{xy} & D_{xz} \\ D_{yx} & D_{yy} & D_{yz} \\ D_{zx} & D_{zy} & D_{zz} \end{pmatrix}$$

Each element captures the variance of the diffusion process

Full diffusion behavior in 3D space

Diffusion Tensor

$$\underline{D} = \begin{pmatrix} D_{xx} & D_{xy} & D_{xz} \\ D_{yx} & D_{yy} & D_{yz} \\ D_{zx} & D_{zy} & D_{zz} \end{pmatrix}$$

- Symmetric positive definite matrix
- 6 unknowns
- At least six measurements needed
- > 6 measurements will provide robustness to noise

b-value, b-vector

$$S_{u_i} = S_{ref} \exp(-bu_i^T \mathbb{D}u_i)$$

b-vector = b-vector = $[u_{x1} \ u_{y1} \ u_{z1}] \ [u_{x2} \ u_{y2} \ u_{z2}]$ $\begin{bmatrix} u_{\chi 3} & u_{\gamma 3} & u_{z 3} \end{bmatrix}$ E.g.: [1 0 0] E.g.: [0 1 0]

b-vector =

E.g.: [0 0 1]

b-value, b-vector

 $S_{u_i} = S_{ref} \exp(-b u_i^T \mathbb{D} u_i)$

$$-\frac{1}{b}\ln(\frac{S_{u_i}}{S_{ref}}) = \begin{bmatrix} u_{xi} & u_{yi} & u_{zi} \end{bmatrix} \begin{bmatrix} D_{xx} & D_{xy} & D_{xz} \\ D_{yx} & D_{yy} & D_{yz} \\ D_{zx} & D_{zy} & D_{zz} \end{bmatrix} \begin{bmatrix} u_{xi} \\ u_{yi} \\ u_{zi} \end{bmatrix}$$

 $y_{i} = u_{xi}u_{xi}D_{xx} + u_{yi}u_{yi}D_{yy} + u_{zi}u_{zi}D_{zz} + 2u_{xi}u_{yi}D_{xy} + 2u_{yi}u_{zi}D_{yz} + 2u_{zi}u_{xi}D_{zx}$

 $y_{1} = u_{x1}u_{x1}D_{xx} + u_{y1}u_{y1}D_{yy} + u_{z1}u_{z1}D_{zz} + 2u_{x1}u_{y1}D_{xy} + 2u_{y1}u_{z1}D_{yz} + 2u_{z1}u_{x1}D_{zx}$ $y_{2} = u_{x2}u_{x2}D_{xx} + u_{y2}u_{y2}D_{yy} + u_{z2}u_{z2}D_{zz} + 2u_{x2}u_{y2}D_{xy} + 2u_{y2}u_{z2}D_{yz} + 2u_{z2}u_{z2}D_{zx}$

 $y_6 = u_{x6}u_{x6}D_{xx} + u_{y6}u_{y6}D_{yy} + u_{z6}u_{z6}D_{zz} + 2u_{x6}u_{y6}D_{xy} + 2u_{y6}u_{z6}D_{yz} + 2u_{z6}u_{x6}D_{zx}$

Many software programs have built-in tools to perform a DTI fitting

Anisotropy : Major axis of the ellipsoid

	Eig	envect	tors
	e_{1x}	e _{2y}	e _{3z}
=	e1x	e _{2y}	e _{3z}
	e_{1x}	e2y	e3z.

Anisotropy : Major axis of the ellipso

For every voxel

$$\underline{D} = \begin{pmatrix} D_{xx} & D_{xy} & D_{xz} \\ D_{yx} & D_{yy} & D_{yz} \\ D_{zx} & D_{zy} & D_{zz} \end{pmatrix}$$

$$E^{T} \begin{pmatrix} \lambda_{1} & 0 & 0 \\ 0 & \lambda_{2} & 0 \\ 0 & 0 & \lambda_{3} \end{pmatrix} P$$

DWIs

Eigen Decomposition

Eigenvectors

$$\mathbf{E} = \begin{bmatrix} e_{1x} & e_{2y} & e_{3z} \\ e_{1x} & e_{2y} & e_{3z} \\ e_{1x} & e_{2y} & e_{3z} \end{bmatrix}$$

Assign Color-code to the Eigen vectors

Anisotropy : Major axis of the ellipsoid

Diffusion Tensor Imaging

IOWA

• With 6 measurements, diffusion in 3D space is characterized

Enables studies of brain disorders

Is there change of white matter integrity ? Is there change in connectivity patterns?

Myth about FA

X Lower FA means loss of WM integrity (and vice versa)

Lower FA can result from increased WM integrity also (and vice versa)

Myth about DTI

X DTI provides measures of WM only

All DTI maps are valid in both WM and GM Changes in FA are more frequently "tried" to be interpreted in WM

DTI can detect changes in GM also

Outline

IOWA

>What is diffusion and why do we care ?

>How to model diffusion signal?

>What are the pitfalls of modeling ?

Fiber Tracking using diffusion MRI

≻How to pre-process diffusion data?

How to extract biologically meaningful diffusion measures ?

Diffusion Tensor is a over-simplistic model for brain studies

With unparalleled sensitivity

??

Key word: "change"

Anisotropic Diffusion

Diffusion Tensor is a over-simplistic model for brain studies

With unparalleled sensitivity

Most MRI voxels are > 8mL

Anisotropic Diffusion

Multiple ellipsoids

Hard to solve mathematically

Fact about DTI

DTI can be used to study brain changes DTI is not a good model for anisotropy detection in most brain voxels

Because of fiber orientation heterogeneity

≻How to model diffusion ?

>What are the pitfalls of modeling ?

Fiber Tracking using diffusion MRI

≻How to pre-process diffusion data?

How to extract biologically meaningful diffusion measures ?

Fiber Tracking Using Diffusion data

If the ellipsoid model is not good, how can you do fiber tracking ??

- Modern day fiber tracking is not performed using ellipsoids
- Makes use of a method called spherical deconvolution

Fiber Tracking Using SD

IOWA

If the ellipsoid model is not good, how can you do fiber tracking ??

- Modern day fiber tracking is not performed using ellipsoids
- Makes use of a method called spherical deconvolution
- Only pertains to finding the <u>fiber orientations</u>
- Do not provide any information about the diffusivity
- Makes certain assumptions

Fiber Tracking Using SD

SD Model

- Measured diffusion signal is a convolution
 - Of a known fiber response kernel
 - > With a fiber orientation distribution function (fODF)
- Goal: Given the kernel, find the fiber ODF

Spherical Deconvolution

> SD

Fiber Tracking Using Diffusion data

IOWA

Implemented in many software packages

MrTrix, DIPY

Outline

IOWA

>What is diffusion and why do we care ?

>How to model diffusion signal?

>What are the pitfalls of modeling ?

Fiber Tracking using diffusion MRI

≻How to pre-process diffusion data?

How to extract biologically meaningful diffusion measures ?

Need for preprocessing

DW images are affected by noise and by artifacts such as Gibbs ringing and distortions.

Noise in diffusion MRI

- DW images are affected by noise and by artifacts such as Gibbs ringing and distortions.
- Noise: diffusion MRI has very low SNR

Noise in diffusion MRI

- DW images are affected by noise and by artifacts such as Gibbs ringing and distortions.
- Noise: diffusion MRI has very low SNR
- Acquisition parameters that affect the SNR:
 - b-value (which affects the TE)
 - Spatial resolution (which affects the TE)
 - > The scanner itself (G_{max} , Slew_{max})

Denoising

Many correction methods are available:

- Local-PCA, Marchenko Pastur PCA
- Patch2Self
- Both implemented in DIPY

denoised_arr = mppca(data, patch_radius=2)

denoised_arr = patch2self(data, bvals)

Denoising

Many correction methods are available:

- Local-PCA, Marchenko Pastur PCA
- Patch2Self
- Both implemented in DIPY

Gibbs Ringing

- DW images are affected by noise and by artifacts such as Gibbs ringing and distortions.
- Gibbs Ringing

Caused by truncation of high frequency Fourier coefficients

- Usually most prominent on the b0 images
- Leads to over-estimation of FA (>1)

Gibbs Ringing

- Correction needed to remove outliers
 - Sub-voxel shift method
 - Implemented in DIPY

To run the Gibbs unringing on the data it suffices to execute the dipy_gibbs_ringing command, e.g.:

dipy_gibbs_ringing data/tissue_data/t1_brain_denoised.nii.gz --num_threads 4 --out_dir "gibbs_ringing_(

- Advanced version for partial Fourier acquired data (RPG)
 - Implemented in DESIGNER https://github.com/NYU-DiffusionMRI/DESIGNER designer dwi1.nii.gz out_dir -rpg -pf 6/8 -dim 2

Distortion Correction

- DW images are affected by noise and by artifacts such as Gibbs ringing and distortions
 - Two sources:

B0 field inhomogeneity

Distortion Correction

- Susceptibility-induced : top-up
 - Two scans (b0s) acquired with opposite k-space read-out polarity are needed

topup --imain=all_my_b0_images.nii --datain=acquisition_parameters.txt --Config=b02b0.cnf --out=my_output

Distortion Correction

- Eddy-current induced : eddy
 - Also corrects for head motion, and signal dropout

Bias Correction

- Magnitude MRI images have a Rician noise distribution
 - Creates a bias in parameter estimates
 - Major concern at low SNR acquisitions
 - For b~1000, not a big issue
 - For b>1000, needs bias correction
 - Not many toolboxes have this implemented
 - Implemented in DESIGNER https://github.com/NYU-DiffusionMRI/DESIGNER designer dwi1.nii.gz out_dir -denoise -rician

Diffusion Preprocessing steps

≻How to model diffusion ?

>What are the pitfalls of modeling ?

≻How to measure diffusion data?

≻How to pre-process diffusion data?

>How to extract biologically meaningful diffusion measures ?

Biologically meaningful diffusion measures

- Involve biophysical modeling
 - Split a voxel into multiple compartments
- Measure diffusion properties associated with each compartment

Biologically meaningful diffusion measures

Large number of unknowns

- Requires multi-shell sampling
- Requires special MRI scanners
- HCP study was a big leap

Multi-shell acquisition

Biologically meaningful diffusion measures

Large number of unknowns

- Requires multi-shell sampling
- Requires special MRI scanners
- New dedicated scanner are now available for such studies
- MAGUS scanner installed at UIOWA in Dec 2022 !!

Biologically meaningful diffusion measures

Large number of biomarkers for neurodegeneration!

Axon diameter mapping

Summary

> Diffusion measures are highly sensitive >DTI is a useful tool that exploits the high sensitivity >DTI studies do not facilitate biological interpretation >Biophysical models do facilitate biological interpretation Always collect multi-shell data when planning diffusion studies Requires dedicated scanner > Hawkeyes can be proud to own the rarest scanner yet! >Many tools are already available for testing on argon! > Please plan to make use of it !!