

Iowa Neuroimaging Consortium: Summer Neuroimaging Bootcamp

Other MRI Methods

James H Holmes, PhD

Research Assistant Professor

Department of Radiology, University of Iowa

May 26, 2022

Disclosures

→ Medical Physicist (not a Neuroscientist)

→ Research expertise in body and breast MRI

Outline

Structural Imaging

- Review of 'standard contrasts'
 - T2w: T2 cube, flair, etc.
 - T1w: MP-RAGE, DIR and others. White vs grey matter nulled.
- Susceptibility
 - SWI
 - QSM

Functional Imaging

- Perfusion
 - Exogenous. DSC, DCE
 - ASL, pcASL, VSASL
- Exchange
 - T1 rho
 - MT
 - CEST
- Spectroscopy
- MNS imaging

Structural Imaging

Magnetization Preparation for Optimizing Tissue Contrast

Preparation	Imaging	Recovery

Example: Inversion Recovery

Inversion Recovery

- Choice of TI allows for nulling specific tissues
- Signal differences can be maximized between different tissues
- Multiple inversions can be combined

Selective Nulling of Tissue Signal By Choice of TI

https://mriquestions.com/ti-to-null-a-tissue.html

T2 and FLAIR CUBE

T2-weighted-Fluid-Attenuated Inversion Recovery

Timings:

Preparation: TI = long to null CSF

Imaging: TE = long (~140 ms) to generate T2 contrast Fast spin echo

Recovery: TR = long

Hajnal JV, et al. High signal regions in normal white matter shown by heavily T2-weighted CSF nulled IR sequences. J Comput Assist Tomogr 1992; 16:506-13. Hajnal JV, et al. Use of Fluid Attenuated Inversion Recovery (FLAIR) pulse sequences in MRI of the brain. J Comput Assist Tomogr 1992; 16:841-844.

3D T1-Weighted BRAVO

Preparation: TI=450 ms and 800 ms shown

Imaging: TE=2 ms Gradient echo

Recovery: TR=5892 ms

MP-RAGE

Magnetization Prepared - RApid Gradient Echo

Collected at 7T (Warning: T1 & T2 change with B0!)

Typical timing parameters

Preparation: TI=1000 ms

Imaging: TE=3 ms

Recovery: TR=2200 ms

Mugler JP 3rd, Brookeman JR. Rapid three-dimensional T1-weighted MR imaging with the MP-RAGE sequence. J Magn Reson Imaging 1991; 1:561-7.

BRAVO

Impact of changing the RF inversion Pulse

IR-Pulse IR-Pulse University of Iowa MR95020170719_2 GE MEDICAL SYSTEMSID: 20170719_2 DISCOVERY MR9501990-08-02, 026Y, F HFS2017-07-19 University of Iowa MR95 GE MEDICAL SYSTEM 0170719_2 0:20170719_2 990-08-02,026Y,F DISCOVERY MR95 017-07-19 TR 5.8921:33:02 PM TE 2.004Sagittal BRAVO7T TI=800 33:02 PM TR 5.89 TE 2.00 agittal BRAVO TI=800 6: GE7T DEV B: 7: Sagittal BRAVO7T TI=800 _____5cm _____5cm B: 2.843mm University of Iowa MR95020170719_2 GE MEDICAL SYSTEMS1D: 20170719_2 DISCOVERY MR9501990-08-02, 026Y, F HF52017-07-19 University of Iowa MR95 GE MEDICAL SYSTEM 0170719_2 0:20170719_2 990-08-02,026Y,F DISCOVERY MR95 017-07-19 TR 5.8921:33:02 PM TE 2.004Sagittal BRAVO7T TI=800 33:02 PM TR 5.89 gittal BRAVO TI=800 TE 2.00 B: 6: GE7T DEV B: 7: Sagittal BRAVO7T TI=800 <u>[.].]</u>5cm L. L. L. L. L. L.

Standard

Hyperbolic Secant

MP2RAGE

Imaging 1: T1w, gray matter nulled Imaging 2: PDw

Processing of Imaging 1 and Imaging 2: T1w image with gray/white matter contrast, removing T2* and B1 effects

Marques JP, et al. MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field. NeuroImage 2010; 49:1271-1281.

MP2RAGE

Marques JP, et al. MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field. NeuroImage 2010; 49:1271-1281.

More ways to optimize the timing of inversion pulses, imaging, and recovery

White Matter Nulled

Gray Matter Nulled

T2 Decay

Approaches to Sensitize for Tissue Susceptibility

SWI (Susceptibility Weighted Imaging) QSM (Quantitative Susceptibility Mapping)

a) Multiple images collected at different TE times

b) T2* decay can be modeled
from signal changes between
the images

c) T2* map and c) R2* map (1/T2*). Note how well we can visualize the hemorrhage in both maps (circles).

Quantitative Susceptibility Mapping (QSM)

Globus Pallidus

Work of Cam Cushing

Potential improvements with higher B0 field strength

Typical Resolution at 3T

IOWA

1mm Isotropic whole brain data from T1 and T2 weighted images

MR Research Facility

Signa 7T – MP-RAGE T1

0.7mm Isotropic Acquired Resolution – Signa 7T

Iowa MR Research Facility

Data From Baolian Yang

Hippocampus at High Resolution

0.6mm isotropic resolution acquired at 7T

Examples of structural imaging in disease

Multiple Sclerosis Participant

T2 FLAIR CUBE

Susceptibility Weighted

MPRAGE T

Huntington's Disease Subject

Susceptibility Weighted Images

T2-weighted

Functional Imaging

Perfusion and Capillary beds

Blood Flow, Blood Pressure and Resistance, Rice University, Open TextBook Photoacoustic Microscopy in a Mouse Ear

Kim et al. Light: Science & Applications. (103) 2019

Example of a capillary bed.

Techniques to Analyze Perfusion

- Pre-imaging approaches.
 - Nitrous Oxide¹
- Optical
- PET^{2,3}
- CT⁴
- Ultrasound
 - Doppler^{5,6,7}
 - Microbubbles^{8,9}
- MRI
 - IVIM, ASL, DSC, DCE

[1] Kety SS, Schmidt CF. J Clin Invest 1948;27:476—83. [2] Kety SS. Semin NuclMed 1985;15:324—8. [3] Patlak CS, Blasberg RG, Fenstermacher JD. J Cereb Blood Flow Metab 1983;3:1—7. [4] Meier P, Zierler KL. J ApplPhysiol 1954;6:731—44. [5] Kedar RP, Cosgrove DO, Bamber JC, Bell DS. Radiology 1995;197(1):39–43. [6] Youssefzadeh S, Eibenberger K, Helbich T, Jakesz R, Wolf G. Clin Radiol 1996;51(6):418–20. [7] Leen E, Angerson WG, Cooke TG, McArdle CS. Ann Surg 1996;223(2):199–203. [8] Krix M. Eur Radiol 2005;15(Suppl 5):E104–8. [9] Meier P, Zierler KL. J Appl Physiol 1954;6:731–44.

Common MRI-Based Perfusion Imaging Methods

	Tracer	Signal directly related to:	Common derived parameters
ASL	Mz of water	Blood flow	ATT
DSC	Gadolinium	Blood volume	Blood flow, MTT
DCE	Gadolinium	Vascular permeability	Transfer rate constant (K _{trans})

E.C. Wong , An Introduction to ASL Labeling Techniques. JMRI 2014. .Pg. 1-10.

ASL and Virtual Magnetic Labeling of Spins

(PASL, FAIR, STAR)

Slice Based (CASL, PCASL)

Motion Based (VS-ASL)

Blood in the slab tagged and moves into volume Blood that passes through plane is tagged

Blood that moves is tagged

Comparison (same normal volunteer)

Spatial (PCASL)

Velocity (VSASL)

69y old subject with slow filling

GBM : Progression vs Pseudoprogression vs Radiation Necrosis

CBF

DSC CE Perfusion

VSASL

F MTT

Perfusion Quantitative

CBF

Qualitative Difference

Example: fMRI using ASL

Bi-lateral finger tapping

J.A. Detre, J. Wang. Clinical Neurophysiology 113 (2002) 621–634

Metabolic Imaging

T1 ρ , CEST, MRS

Τ1ρ (**T1rho**)

- Measures spin lattice relaxation time in rotating frame.
- Relaxation includes molecular interactions such as chemical exchange, dipolar interaction, and J-coupling

- A) Tip-down 90 pulse
- B) Spin-lock pulse in transverse plane for time TSL

MR Research Facility

C) Tip-up 90 pulse

Redfield AG. Nuclear magnetic resonance saturation and rotary saturation in solids. Phys Rev 1955;98:1787.

Wang Y, et al. Quant Imaging Med Surg. 2015, 858-885. PMID: 26807369

MR Research Facility

T1p Sensitivity to pH

Animal Validation

In vivo Evaluation

Multi-Parametric MR Imaging in HD

Demographics

Controls N=26 HiCAP: N=24 (CAG Age Product=430) LoMo CAP: N=26 (CAG Age Product=295)

Data from Wassef et al. 2015

T1ρ in Juvenile Onset HD

MR Research Facility

Data from Tereshchenko et al. 2020

Magnetization Transfer (MT) and Chemical Exchange Saturation Transfer (CEST)

https://mriquestions.com/magnetization-transfer1.html

- 1) An off-resonance RF pulse excites the protons in the bound pool
- 2) Energy is transferred from the protons in the bound pool to those in the free pool
- 3) The change in signal is measured by imaging protons in the free pool on-resonance

Magnetization Transfer

Quantitative MT images of the adult human brain.

Parameters include: Pool size ratio *F* Forward exchange rate k_f Spin-lattice relaxation rate of the free pool $1/T_{1,f}$ Spin-spin relaxation rate of the free pool $T_{2,f}$ Spin-spin relaxation rate of the restricted motion pool $T_{2,r}$

Magnetization Transfer

Exploits asymmetry of the MT spectrum. Provides sensitivity to myelin.

Varma et al. MRM 2015 Girard et al. MRM 2015;73:2111-2121

Magnetization Transfer (MT) and Chemical Exchange Saturation Transfer (CEST)

Extending to Z-spectrum and CEST

- 1) An off-resonance RF pulse excites the protons in the bound pool (fn)
- 2) Energy is transferred from the protons in the bound pool to those in the free pool
- 3) The change in signal is measured by imaging on-resonance protons in the free pool
- 4) Increment the off-resonance RF pulse and repeat steps 1-2.

Example: Glu-CEST in AD

Mapping neurotransmitter Glutamate

- Mouse model of AD at U. Penn.
- Anatomical images (a, c)
- Glu-CEST (b, d)
- wild-type control (top)
- Alzheimer's disease (bottom)

MR Research Facility

Haris M, et al. NMR Biomed. 2013;26:386–91. doi: 10.1002/nbm.2875.

CEST Used in Neurological Disorders

- → Overview by Shaffer et al. Front Psychiatry. 2020
- → APT CEST
 - Stroke: Harston et al. Brain (2015), Tietze et al. NMR Biomed (2014), González et al. J Magn Reson Imaging (2012)
 - AD: Wang et al. Chin Med J (Engl) (2015)
 - PD: Li et al. Eur Radiol (2014)
- →GluCEST
 - Mouse models of HD, AD, and PD
- →MICEST
 - Mouse models of AD

Single Voxel MRS - semiLASER

Data from Cerebellar Vermis 2x2x2cm voxel – MR950 (7T)

Metabolite	Coefficient of Variation (CV)
Cho	1.03
Cr+PCr	2.77
NAA	1.65
Glx	1.31
Gsh	0.79
ml	1.18
Asp	1.41
Tau	3.27

Localizer + Cal + MRS = 8 minutes

Iowa MR Research Facility

Sequence from Ralph Noeske

FID Acquisition - Volunteer

Scan Parameters Matrix=64x64 FOV=20x20cm Slice=10mm WET WS Acq Time: WS=12 min NWS=4min

Cho (Choline) Cr (Creatine)

NAA (N-acetyl aspartate)

7T CSI Acquisition

Data from Mathews Jacob

³¹P MRS

INWA

- Provides insight on energy processes
- Pcr (phosphocreatine) dominant signal
- ATP composed of 3 phosphate groups
- PME (phosphomonoesters)
- PDE (phosphordiesters)
- Pin (inorganic Phosphorus) shift is pH dependent.

³¹P MRS: Terazosin Trial in PD

<u>**TZ Study</u>** Kumar Narayanan Jordan Schultz Mike Welsh</u>

МЛА

Analysis by Jia Xu

Neuro Applications of ³¹P Imaging

→ Review Article:

- Santos-Diaz A, et al. Biomed Signal Process Cont. 2022;60:101967
- → Stroke
 - Bottomley PA, et al. Radiology 1986;160:763-6.
 - Levine SR, et al.. Radiology 1992;185:537-44.
- → Brain tumors
 - Aisen AM, et al. Radiology. 1989;173:593–599.
- → Alzheimer's disease
 - Rijpma A, et al. Neuroimage Clin., 2018;18:254-261
- → Multiple Sclerosis
 - Husted CA, et al. Ann. Neurol. 1994;36:239-241.
- → Bipolar Disorder
 - Lee JH, et al. Ann. Reports of NMR Spectro. 2012;75:115-160.

T1 Post Contrast

²³Na Imaging in Subject with GBM

Neuro Applications of ²³Na Imaging

- Stroke (Thulborn KR, et al. Radiology (1999) 213:156–66.)
- Brain tumors (Ouwerkerk R, et al. Radiology (2003) 227:529–37.)
- Huntington's disease (Reetz K, et al. Neuroimage (2012) 63:517– 24.)
- Alzheimer's disease (Mellon EA, et al. AJNR Am J Neuroradiol. (2009) 30:978–84.)
- Normal aging (Thulborn K, et al. NMR Biomed. (2016) 29:137–43.)
- Multiple Sclerosis (Inglese M, et al. Brain (2010) 133:847–57.)

Summary

- →MRI provides great flexibility
 - Approaches to sensitize for various structural differences
 - Variety of methods to look at physiologic processes
- → Small changes to how we image can have large changes to image appearance and what the data mean.
- The fields of MRI acquisition and reconstruction continue to evolve.
 - What new contrast mechanisms will be coming in the future?
 - Are they relevant for your application?

Acknowledgements

- Vince Magnotta (Iowa)
- Jia Xu (Iowa)
- Chu-Yu Lee
- Mathews Jacob (Iowa)
- Users of the University of Iowa MR Research Facility
- Kevin Johnson (UW-Madison)

