MODELING

\& STATISTICS FROM

 A NONSTATISTICIAN 。$1+x+y+2 a+21$ $1 \mathrm{lim} h->$

 ROIS, VOXEL/VERTEXWISE, MATRIX ANALYSES, MULTIPLE COMPARISONS, DEATH

LAUREN HOPKINS
IOWA NEUROIMAGING CONSORTIUM

MODELING STARTS DURING EXPERIMENTAL DESIGN

You know the stimuli you put in your experiment
You know your hypotheses

You decided to do an experiment because you were interested in something

You decided to do an experiment because you were interested in something

AND YOUR HYPOTHESES ABOUTTHEM $=$

You know your hypotheses

You know the stimuli you put in your experiment

MODELING STARTS WITH WHAT HOW?

- Stimuli
- Penguin \& Bulbasaur
(Potential) Hypotheses
- Penguin (villain) > Bulbasaur (inherently neutral) in amygdala
- Penguin (person) > Bulbasaur (animal?) in FFA
- Penguin \& Bulbasaur show no differential activation in V1

IF YOU HAVE THIS SCAN:

- TIw
- FLAIR
- DWI
- fMRI

YOUR HYPOTHESIS WHLL PROBABLY INVESTIGATE:

- Volume (partial or whote)
- WM hyperintensities
- WM tract integrity (whole or partial)
- Regional brain activity

YOUR EXPERIMENTAL DESIGN AFFECTS THE SCANS YOU GET AND YOUR SGANSAFFECT THE

 MODELS YOU CREATE
COOL, SO ALL I NEED ARE.MY VARIABLES OF INTEREST?
 LOL I wish, dude

Confounding variables

- Variables you think may affect your results in a patterned - but unplanned - way 1. Age

2. Years in school
3. Years smoked
4. Years taking a certain medication
5. Score on a depression test
6. Serum albumin levels (blood protein)

WHERE DOES THAT INFO COME FROM?

(2) Possible Data Loss Some features might be lost if you save this workbook in the comma-delimited (.csv) format. To preserve these features, save it in an Excel file format.

B2 $\quad \therefore \quad \times \geqslant f_{x} \quad 2 \times \mathrm{qsz53tr} 2$

1	subject_id	Age	Gender	packyears	COPD_YN	GOLD_Stage	GOLD_3_Gra	GGOLD_4_Grc	GOLD_6_Grc	PCA_subtype	PCA
	D002	70	0	30	1	1	3	4	4		
3	D003	74	o	69	1	1	3	4	4	0	
4	D004	74	1	75	1	1	3	4	4	\bigcirc	-0
5	D005	72	1	18	1	1	3	4	4		
6	D006	59	1	36	o	0	2	2	2	\bigcirc	-0
7	D007	74	1	100	1	1	3	4	4	\bigcirc	-0.3
8	Doos	74	1	30	o	\bigcirc	2	2	2		
9	D010	65	1	40.5	1	1	3	4	4	\bigcirc	-0.2
10	D011	65	1		-	0	2	2	2		
11	D012	70	0	80	1	1	3	4	4	\bigcirc	
12	D014	72	1	25	0	\bigcirc	2	2	2	\bigcirc	0.35
13	D015	78	0	120	1	2	3	4	5	\bigcirc	
14	D017	69	1	10	1	2	3	4	5	\bigcirc	
15	D018	67	0	50	1	2	3	4	5	\bigcirc	
16	D020	82	1	22.5	o	0	2	2	2	\bigcirc	
17	D021	57	0	42	0	0	2	2	2		
18	D022	58	1	19	0	0	2	2	2	\bigcirc	
19	D023	77	0	58	o	-1	2	3	3		
20	D024	69	0	58	1	1	3	4	4	\bigcirc	
21	D025	76	0	52.5	1		3	4	4	\bigcirc	
22	D026	75	0	22.5	0	0	2	2	2	\bigcirc	
23	D027	81	0	40	1	2	3	4	5	5	
24	D028	53	1	20	o	0	2	2	2	0	
25	D031	54	0	22	0	0	2	2	2	0	
26	D032	61	0	44	0	\bigcirc	2	2	2	\bigcirc	
27	D034	80	0	15	0	-1	2	3	3	5	
28	D036	82	1	30	1	1	3	4	4		
29	D037	80	1	60	0	0	,	2	2	0	
30	D038	77	0	48	0	0	2	2	2		
31	D039	71	1			2	3	4	5		
32	D040	60	0	5.45	\bigcirc	\bigcirc	2	2	2	3	
33	D041	62	0	32	0	0	2	2 2	2	\bigcirc	
34	D042	72	1	32	。			2	2	\bigcirc	
35	D044	56	0	38	o	0	2	2	2	\bigcirc	
36	D046	80	,	84	-	\bigcirc	,	2	2	0	
37	D047	76	1	30	o	,	2	2	2		
38	1049	61	1							0	

 C_airway_sub
1.2112778 A
0.1596425 D

LET'S SEESOME

 MODEL EXAMPLES(IN R CONVENTION BECAUSE I AM ULTRA TRASH AT PYTHON AND SPSS IS GAUCHE)

KNOW SWHAT S YOU \& WANT S TO MODEL \&

OR AT LEAST HAVE A GOOD IDEA OF WHAT YÖU
WANTTOLOOKAT)

AN EXAMPLE OF HOW VARIABLES CAN TRICK YOU

Homer and Barney are in a competition to see who can identify the most different Duff Beers from Moe's. Barney identifies a higher proportion of beers correctly than Homer on each of 2 days. Did Barney answer a higher proportion correctly than Homer?

Simpsons Paradox

MONDAY: ${ }^{\text {Hoimer }}=7 / 8$ beers. Barney $=2 / 2$ beers.
Barney (100%) more accurate than Homer (87.5%)
TUESDAY: Homer $=1 / 2$ beers. Barney $=5 / 8$ beers.
Barney (62.5\%) more accurate than Homer (50\%)
OVERALL: Homer $=(80 \%)$ MORE ACCURATE than Barney (70%)

Simpsons Paradox

Simpsons Paradox \& fMRI

- FMRIDATA CAN BE LOOKED AT IN MANY MANY, MANY WAYS
- SIMPSONS PARADOXIS COMMON AND CAN HAPPENIF DATA IS SUBSETTED IN CERTAIN WAYS
- KNOW YOUR DATA AND BE WARY!

Time

Participant Mean

- Individual Timepoint

THE DATA STRUCTURE (E.G. IN R)

- ROWS = SINGLE OBSERVATION
- COLS = SINGLE MEASURE/VARIABLE
- THIS MEANS SESSIONS/TIMEPOINTS FOR the same subject go in Different ROWS

A	B	c	D	E	F	G	H	1	J	K	L	M	N	\bigcirc	P	a		R		s	T	U
ursi	aid	session_id	visit	family_id	date_of_visit	sil group_binar	group_predr	age	elapsed_byD	elapsed_byA	age_baseline	age_onset dis	disease_dure	epal	Inpal	gender		education	rs		pegs.dom	tap.dom
119	1354	60153518	1	11350	1/10/18	DM1	DM1	61.417	0	0	61.417	NA NA	NA	NA	NA		2	16		2	81.5	34.5
119	1738	60771519	2	11350	2/22/19	DM1	DM1	62.5	1.11780822	1.083	61.417	NA NA	NA	NA	NA		2	16		1	83.66	26.5
119	2248	60555820	3	11350	2/7/20	DM1	DM1	63.417	2.07643536	2	61.417	63	0.49343536	NA	NA		2	16		2	81	35.
122	2497	63335916	1	99978	8/18/16	Unaffected	Unaffected	58.917	0	0	58.917	NA NA	NA	13	2.56494936		2	18	NA		86	45.
122	1123	60366018	2	99978	1/25/18	Unaffected	Unaffected	60.333	1.43733812	1.416	58.917	NA NA	NA	13	2.56494936		2	18	NA		76	38.
131	2323	64094516	- 1	11761	10/10/16	DM1	DM1	54.583	0	0	54.583	46	8.583	100	4.60517019		2	20		2	73	
137	1744	65250814	1	99993	12/30/14	Unaffected	Unaffected	52.333	0	0	52.333	NA NA	NA	14	2.63905733		1	13	NA		70	58.
137	1786	64426718	3	99993	11/3/18	Unaffected	Unaffected	56	3.84383562	3.667	52.333	NA NA	NA	14	2.63905733		1	13	NA		66	46
137	2449	61997416	2	99993	5/10/16	Unaffected	Unaffected	53.75	1.36067071	1.417	52.333	NA NA	NA	14	2.63905733		1	13	NA		71	
139	2350	60512220	3	10078	2/4/20	DM1	DM1	43.917	2.22714275	2.25	41.667	25	18.8941428	126	4.83628191		1	13		2	59	
139	1339	64573117	- 1	10078	11/13/17	DM1	DM1	41.667	0	0	41.667	25	16.667	126	4.83628191		1	14		2	63	
139	2200	64616118	2	10078	11/16/18	DM1	DM1	42.667	1.00821918		41.667	25	17.6752192	126	4.83628191		1	13		2	58	
152	1069	60167218	- 1	99956	1/11/18	Unaffected	Unaffected	46.75	0	0	46.75	NA NA	NA	13	2.56494936		2	18	NA		58	
164	1597	61547518	1	99952	4/17/18	Unaffected	Unaffected	33.667	0	0	33.667	NA NA	NA	NA	NA		2	18	NA		54.47	0.28
164	1279	61347419	2	99952	4/3/19	Unaffected	Unaffected	34.667	0.96164384	- 1	33.667	NA NA	NA	NA	NA		2	18	NA		55.19	52.
166	1336	61894618	- 1	99947	5/11/18	Unaffected	Unaffected	59.25	0	\bigcirc	59.25	NA NA	NA	12	2.48490665		2	16	NA		75.66	48.
172	2641	63720917	3	11317	9/15/17	DM1	DM1	40.167	2.96986301	2.917	37.25	16	24.219863	246	5.50533154		1	12		2	60	30.
172	2512	61118116	2	11317	3/17/16	DM1	DM1	38.667	1.4734037	1.417	37.25	16	22.7234037	246	5.50533154		1	12		2	78	31.
172	1021	63879514	- 1	11317	9/26/14	DM1	DM1	37.25	0		37.25	16	21.25	246	5.50533154		1	12		2	66	31.
188	2314	60638916	2	99996	2/13/16	Unaffected	Unaffected	49.917	1.17776031	1.167	48.75	NA NA	NA	12	2.48490665		2	14	NA		59.22	52
188	1516	64961114	1	99996	12/10/14	Unaffected	Unaffected	48.75	0	0	48.75	NA NA	NA	12	2.48490665		2	14	NA		72	36.
188	2506	63495017	3	99996	8/30/17	Unaffected	Unaffected	51.5	2.72054795	2.75	48.75	NA NA	NA	12	2.48490665		2	14	NA		58	51.
199	1810	63705915	2	10231	9/14/15	DM1	DM1	50.417	1.02739726	1	49.417	24	26.4443973	131	4.87519732		2	12		4	117	11
199	2599	63565914	- 1	10231	9/4/14	DM1	DM1	49.417	0	0	49.417	24	25.417	131	4.87519732		2	12		2	104	
202	1636	60844717	1	10843	2/27/17	DM1	DM1	55	0	0	55	49	6	112	4.71849887		2	18		2	91	
202	2524	64312818	2	10843	10/26/18	DM1	DM1	56.667	1.66027397	1.667	55	497	7.66027397	112	4.71849887		2	18		2	79	35.
206	1138	63134519	2	99938	8/5/19	Unaffected	Unaffected	57.083	1.54520548	1.045	56.038	NA NA	NA	5	1.60943791		2	14	NA		67	47.85
206	1126	60269018	- 1	9938	1/18/18	Unaffected	Unaffected	56.038	a	0	56.038	NA NA	NA	5	1.60943791		2	14	NA		70.47	
209	2398	NA	- 1	11107	9/16/14	DM1	DM1	53.917	0	0	53.917	25	28.917	145	4.97673374		2	12		3	84	
209	2755	NA	2	11107	3/10/16	DM1	DM1	55.333	1.48167528	1.416	53.917	25	30.3986753	145	4.97673374		2	12		3	107	22.
214	2593	60309716	2	99990	1/21/16	Unaffected	Unaffected	38.083	1.04094618	1	37.083	NA NA	NA	12	2.48490665		2	20	NA		56	58.
214	1543	60096015	- 1	99990	1/6/15	Unaffected	Unaffected	37.083	0	0	37.083	NA NA	NA	12	2.48490665		2	20	NA		63	53
215	2335	61693018	2	99971	4/27/18	Unaffected	Unaffected	52.5	1.15068493	1.083	51.417	NA NA	NA	14	2.63905733		1	18	NA		63	
215	1303	60902117	- 1	99971	3/3/17	Unaffected	Unaffected	51.417	0	0	51.417	NA NA	NA	14	2.63905733		1	18	NA		79	40.
217	1660	62050617	1	10819	5/22/17	Unaffected	Unaffected	57.917	0	0	57.917	NA NA	NA	5	1.60943791		1	18		1	67	

- fMRI experiments can include:
- Multiple scans per subject
- Multiple sessions per subject
- Multiple timepoints
- Scanner software change between scans

WHAT DO YOU NEED FOR MODELING

- Preprocessed data (any modality)
- Variables datasheet
- Model to run

```
fMRI ~ group*CAG
fMRI ~ group*CAG + age
fMRI ~ group*CAG + age + (1|family_numb/ursi)
```


ROIs - REGION(S) OF INTEREST ANALYSES

Looking at predefined anatomical areas

- THERE ARE MANY DIFFERENT WAYS OF DEFINING ROIS + 1) LOCALIZERS,

2) COORDINATE-BASED, 3) A PRIORM- THAT WERENOT,COVERING

- SORRY.
- I AM BUT ONE MAN
- I HAVE LET YOU DOWN.

I'M POSITIVELY BEDEVILED WITH MEETINGS ET CEIERA.

ROI Basics

- YOU PARCELLATE EITHER A) SOME OR, B) ALL OF THE BRAIN INTO ANATOMICAL "REGIONS," FOCUSING ON AREAS THAT "INTEREST" YOU - THESE ANATOMICAL AREAS ARE OFTEN PREDEFINED BY A TEMPLATE
- ONCE YOU HAVE YOUR ROI(S) YOU USUALLY CONSOLIDATE ALL THE VOXELS IN THE REGION IN SOME STATISTICAL WAY
- E.G. MEAN, MEDIAN, NON-ZERO MEAN/MEDIAN, SUM (WEIRD FLEX), SD, MIN \& MAX
- CAN THEN COMPARE ROI STATS BETWEEN GROUPS OR SEE HOW THEY CHANGE OVER TIME (OR OTHER STUFF, GET CREATIVE)
- CAN DO ROI ANALYSES ON FMRI, DWI, VOLUMETRICS, T1RHO, ANYTHING THAT CAN BE PARCELLATED

INDIVIDUAL VOXELSS/VERTICES ARE THE UNIT OF

VOXELWISE BASICS

- REMEMBER: A BRAIN IMAGE IS MADE UP OF MANY 4 HOUSANDS OF VOXELS WHERE THE VALUE OF THE VOXEL ITS. UNWEN TYN N
- CAN PERFORM ANY REGRESSION ON. ALL VOXELS
- REGRESSION TEST IS PERFORMED ON EACH VOXEL INDIVIDUALLY
- RESULTS IN WHOLE BRAIN MAPS WITH A MAPFOR

EACH EFFECT

- E.G.VOX ~ GROUP*AGE WILL HAVE ONE MAPFOR

GROUP EFFECT, ONE FOR AGE, ONE FOR THE INJERACFION

VOXELWISE REGRESSION MAP

En

- CAN GENERATE ANY STATISTICAL MAP THAT YOU WANT

ATEIRST YOUR MAPHAS VALUES FOR 'ALL'VOXELS
O CAN THRESHOLDTO GET A SENSE OF CLUSTERS

EFFECT OF FEV1 ON FA :
FEV1_postBD

MATRIX ANALYSIS AND FUNCTIONAL CONNECTIVITY

[^0]Four major repeating FC matrices

WHAT DOES A MATRIX LOOK LIKE BEHIND THE SCENES

- Can keep lower triangle of matrix and vectorize (read. unfurl) it into a single row and then perform modeling on it
- Matrix CAN BE a variable in models
- RSA (Relational Similarity Analysis)

1	1	0
4	2	1
0	2	1

\section*{| 1 |
| :--- |
| 1 |
| 0 |
| 4 |
| 2 |
| 1 |
| 0 |
| 2 |
| 1 |}

CAN MODEL WITH A MATRIX

What can be a matrix?

- IF YOU HAVE 2 MEASURES YOU CAN CORRELATE (OR COMPARE SOMEHOW) AND MANY PAIRS BEING COMPARED YOU CAN MAKE A MATRIX OUT OF IT
- YOU CAN MAKE SOME SICK STUFF
- CAN PERFORM A NETWORK ANALYSIS FROM A CORRELATION MATRIX

1. Transform corr. matrix to UNDIRECTED adjacency matrix

- Transform every non-zero corr to 10 R
- Threshold corr. So every-value above a thresh. is set to 1 I

2. Corr. mat can be seen as UNDIRECTED adjacency matrix of graph where
the partial correlations represent edge weights

- NETWORKS CAN BE EXPRESSED BY ADJACENCY MATRICES

NOW YOU'RE A GRAPH ANALYST GOOD JOB
 are a Small Step from Graph Analyses

EVERYONE AGREES MCC SHOULD BE PERFORMED

- WHY?
- WE HAVE DONE STATS OF THOUSANDS OF VOXELS
- MAKES US MORE LIKELYTO MAKE TYPE 1 ERROR
- HAVE TO CORRECT FOR THAT

NO ONE AGREES ON HOW TO DO MCC
WAIT, REALLY?

- YEAH, LITERALLY NO ONE
- WHAT DO YOU DO?
- YOU PICK WHATEVER METHOD YOU LIKE BEST
- DON'T PEOPLE GET IN TROUBLE FOR THAT?
- YEAH ALL THE TIME
- ISNT THERE, LIKE, A MATHEMATICALLY CORRECT WAY?
- NO
- WOW
- YEAH
- THIS IS CRAZY
- SORRY
- "BONNFERONI" CORRECTION
- First correction most think of
- Correct by total number of voxels
- Each voxel p-value * \#voxels
- DO NOT DO - THIS IS INSANE
- Voxels are not independent observations
- RESELS (RESOlution ELEmentS)

WHY IS MULTIPLE COMPARISON CORRECTION SO HARD

- RESEL number is similar (not equal) to number of independent observations
- TAKE HOME POINT: Voxels around each other are smoothed together so are more similar to each other - each voxel is NOT an independent observation

RIGHT ON, NERDS.

- DO SOME FALSE DISCOVERY RATE (FDR) CORRECTION, I GUESS
- CONTROL THE PROPORTION OF POSITIVE RESULTS THAT ARE FALSE POSITIVES
- SELECT FDR THRESHOLD (Q)
- IMPORTANT: YOU CONTROL THIS THRESHOLD (E.G. 0.05)
- REPRESENTS 5\% "SIGNIFICANT" VOXELS ARE FALSE
- GIVEN Q, A SINGLE-VOXEL THRESHOLD IS CALCULATED
- THIS IS NUMBER YOU THRESH. VOXELS AT
- MORE SENSITIVE TO LARGE REGION ACTIVTY

SO WHAT'S TO BE DONE?

FDR(data = NULL, sp.cols = NULL, var.cols = NULL, pvalues = NULL, model.type = NULL, family = "auto", correction = "fdr", q = 0.05)

FDR \& CLUSTERING

ONCE YOU HAVE YOUR SINGLE-VOXEL THRESHOLD VALUE FROM FDR YOU CAN THRESHOLD FURTHER BY PERFORMING CLUSTER THRESHOLDING

- ONLY ALLOW CLUSTERS LARGER THAN A CERTAIN NUMBER
- IMPORTANT: IF YOU THRESHOLD BY CLUSTER YOU CANNOT MAKE CONCLUSIONS ABOUT INDIVIDUAL VOXELS

152

D X [A]u AFNI: Desktop/GLOBAL_T.

Co
Swap
Norm
c $\overline{7}$ -
b $\overline{\text { F }}$
r r ${ }_{\text {a }}$
g $\overline{\text { F }}$
i
8 $\overline{\text { F }}$
z $\sqrt{\text { 左 }}$
Pem

152

X [A]u AFNI: Desktop/GLOBAL_T

©

```
args <- commandArgs(trailingOnly=TRUE)
which.run <- as.numeric(args[1]
num.cores <- as.numeric(args[2]
```


library(doParallel)

```
\#library(lmerTest)
library(car)
library(nifti.io)
library(foreach)
dir.project <- "/Shared/hothlab/copd_bids"
FORM.ls <- rep("nii ~ FEV1_postBD + Age + packyears",1)
FUNC.ls <- rep("lm",1)
MOD.ls <- c("FA", "AD", "RD")
DATA.ls <- paste0(dir.project, "/derivatives/dwi/scalars_HCPICBM_1mm/", MOD.ls, "/unzip")
NAME.ls <- paste0("Regression_Hopkins-", MOD.ls)
dir.analysis <- paste0(dir.project, "/derivatives/dwi/analyses/DWI_Hopkins_20210506")
\# load data frame for analysis
pid.var <- "subject_id"
sid.var <- "session_id"
ogf <- read.csv(sprintf("\%s/NeuroImaging_Dataset_EVERSMOKERS_only.csv", dir.project)
ogf <- ogf[!is.na(ogf\$FEV1_postBD),]
\# set up data for run
dir.data <- DATA.ls[which.run]
dir.save <- paste0(dir.analysis, "/", NAME.ls[which.run])
\# dir.create cannot create recursive directories
dir.create(dir.save, showWarnings = FALSE)
save.prefix <- "DWI_FEV1"
MODEL.NAME <- NAME.ls[which.run]
FORM <- FORM.ls[which.run]
FUNC <- FUNC.ls[which.run]
\# match subjects to data
ogf\$fls <- character(nrow(ogf))
for (i in 1:nrow(ogf)) \{
tname <- tname <- list.files(dir.data, pattern=paste0("sub-", ogf[i, pid.var], "_ses-", ogf[i, sid.var]), full.names = TRUE)
if (length(tname) != 0) \{
ogf\$fls[i] <- tname[1]
\}
\}
\#ogf
ogf <- ogf[ogf\$fls != "", ]
8 \#only keep good people and people with valid dti
9 ogf <- ogf[ogf\$GOLD_4_Groups != 1, ]
```


[^0]: Sliding window FC matrices

