INC Summer Neuroimaging Bootcamp 2022 Visualizations

Tim Koscik, PhD May 27, 2022

As Neuroscientists, We Tell Stories.

2

- Our stories are based on large, complex, and detailed data.
- We want our stories to be insightful, understood, and remembered.
- Visual elements provide a mechanism to interpret and present massive amounts of data to augment our story-telling.

The purpose of visualization is not about pretty pictures. The purpose of visualization is to provide insight.

visualization is a mechanism for conveying information in an accurate, meaningful, and impactful manner

3 Principals of Impactful Visualization

- 1. Truthful
 - based on thorough, objective research
 - portray data, models, and procedures accurately
- 2. Insightful
 - your story, evidence, complex trends, relationships, and inferences should be easy to see and understand
 - viewers should be enlightened by the information you present and able to act on accordingly
- 3. Beautiful
 - Effective visualization should be well-designed, draw attention, and be aesthetically pleasing.
 - Aesthetics should be effectively deployed in service of the data-driven story

Visualizations that require mental gymnastics are not the G.O.A.T.

"Glass brains, worst brains." -Simone Biles (if she was a neuroscientist) Inventor of the PHYSICALLY Reorderable Matrix

not Danny Devito, sorry Lauren

"He never had problems with drawing...."

Jacques Bertin

- actual quote from his Wikipedia page

If you ever doubt you live in the future, watch this...

http://dataphys.org/list/bertins-reorderable-matrices/

Jacques Bertin Introduced "Retinal Variables"

position, size, shape, value, color, orientation, texture

visualizations should make use of the elements of perception of

Data visualization is a translation of abstract ideas—such as numbers and statistics—to communicate your scientific story.

a picture is worth a thousand words, but always label your axes.

What story is this visualization telling?

Choose a Slice Plane that Captures Your Data Best

y – anterior/posterior – coronal

Choose a Slice Plane that Captures Your Data Best

z – superior/inferior – axial

Choose a Slice Plane that Captures Your Data Best

x – left/right – sagittal

Thresholding and Winsorizing

Compositing

Colors

- color scales are best when colors draw attention to data or levels or values of interest, colors "pop out"
- ideally, the color scale you choose should be robust against a change in apparent scale for colorblind individuals as well as when printed or displayed in grayscale

Deutanomaly

Tritanomaly

Protanomaly

Desaturated

red/white/blue

Deutanomaly

Tritanomaly

Protanomaly

Desaturated

Deutanomaly

Tritanomaly

Protanomaly

Desaturated

hot

Deutanomaly

Tritanomaly

viridis

Protanomaly

Desaturated

viridis plasma

Deutanomaly

Tritanomaly

Protanomaly

Desaturated

cubehelix

Deutanomaly

Tritanomaly

cubehelix

Protanomaly

Representations of Colors

- RGB
 - red, green, and blue values from 0 to 255, indicating the mixture of additive colors
 - this pink is **255, 105, 180**
- Hex Colors
 - computers have bits (0's and 1's) arranged into groups of 8, making a byte
 - 2^8 = 256, hence we can represent 8 bit RGB colors with three binary values
 - in binary this pink is **1111111, 01101001, 10110100**
 - but that's a lot of digits
 - base 16 digits, or hexadecimal makes this easier, we can represent every byte with 2 digits (0,1,2,3,4,5,6,7,8,9,0,A,B,C,D,E,F)
 - in Hex, hot pink is **#FF69B4**

There is a lot of visualization software out

there...

This list is woefully incomplete, because I got tired of looking.

- **3D Brain Atlas** Reconstructor
- **3D Slicer**
- ABrainVis (Android)
- AFQ-Browser
- Analysis of Functional
- Neurolmages (AFNI)
- Analyze
- BECA •
- CONN **Biolmage Suite**
- Connectome Blue Brain Brayns* Viewer (*histology)
- BrainBrowser
- **BrainImageJava**
- BrainMiner
- **BrainNetViewer** •

ENIGMA Toolbox • FIV

Brainnetome

BrainPainter

BrainScope

BrainSuite

BrainVox?)

BrainVisa

CARET

CAWorks

(successor to

BrainVoyager

Connectome

Workbench

Diamond

Dragonfly**

DataViewer3D

DiffusionKit

- FSL (e.q., FSLeves, FSLview)
- FreeSurfer (e.g.,
 - FreeView, tkview) •
- Histolozee
- ImageJ
- ITKSnap •
- LONI (e.g., Shapeviewer)
- Mango
- Matlab
- MIPAV
 - MRIcron
- MRIcroS
- MMVT (Multimodal

- Neuroimaging & Visualization Tool)**
- **MRtrix**
- MultiTracer version 2
- NeuroLens
 - NeuroMorphVis (*neurons)
 - NeuroSynth
 - R (ggseg, ggseg3d)
- SPM
- STAPLE
 - Vaa3D
- Visbrain

- xiView

